24 research outputs found

    Pretty Good Strategies and Where to Find Them

    Full text link
    Synthesis of bulletproof strategies in imperfect information scenarios is a notoriously hard problem. In this paper, we suggest that it is sometimes a viable alternative to aim at "reasonably good" strategies instead. This makes sense not only when an ideal strategy cannot be found due to the complexity of the problem, but also when no winning strategy exists at all. We propose an algorithm for synthesis of such "pretty good" strategies. The idea is to first generate a surely winning strategy with perfect information, and then iteratively improve it with respect to two criteria of dominance: one based on the amount of conflicting decisions in the strategy, and the other related to the tightness of its outcome set. We focus on reachability goals and evaluate the algorithm experimentally with very promising results

    Towards Assume-Guarantee Verification of Strategic Ability

    Full text link
    Formal verification of strategic abilities is a hard problem. We propose to use the methodology of assume-guarantee reasoning in order to facilitate model checking of alternating-time temporal logic with imperfect information and imperfect recall

    Towards Modelling and Verification of Social Explainable AI

    Full text link
    Social Explainable AI (SAI) is a new direction in artificial intelligence that emphasises decentralisation, transparency, social context, and focus on the human users. SAI research is still at an early stage. Consequently, it concentrates on delivering the intended functionalities, but largely ignores the possibility of unwelcome behaviours due to malicious or erroneous activity. We propose that, in order to capture the breadth of relevant aspects, one can use models and logics of strategic ability, that have been developed in multi-agent systems. Using the STV model checker, we take the first step towards the formal modelling and verification of SAI environments, in particular of their resistance to various types of attacks by compromised AI modules

    Assume-Guarantee Verification of Strategic Ability

    Full text link
    Model checking of strategic abilities is a notoriously hard problem, even more so in the realistic case of agents with imperfect information. Assume-guarantee reasoning can be of great help here, providing a way to decompose the complex problem into a small set of exponentially easier subproblems. In this paper, we propose two schemes for assume-guarantee verification of alternating-time temporal logic with imperfect information. We prove the soundness of both schemes, and discuss their completeness. We illustrate the method by examples based on known benchmarks, and show experimental results that demonstrate the practical benefits of the approach

    STV+AGR: Towards Practical Verification of Strategic Ability Using Assume-Guarantee Reasoning

    Full text link
    We present a substantially expanded version of our tool STV for strategy synthesis and verification of strategic abilities. The new version provides a web interface and support for assume-guarantee verification of multi-agent systems

    Natural Strategic Abilities in Voting Protocols

    Get PDF
    Security properties are often focused on the technological side of the system. One implicitly assumes that the users will behave in the right way to preserve the property at hand. In real life, this cannot be taken for granted. In particular, security mechanisms that are difficult and costly to use are often ignored by the users, and do not really defend the system against possible attacks. Here, we propose a graded notion of security based on the complexity of the user's strategic behavior. More precisely, we suggest that the level to which a security property φ\varphi is satisfied can be defined in terms of (a) the complexity of the strategy that the voter needs to execute to make φ\varphi true, and (b) the resources that the user must employ on the way. The simpler and cheaper to obtain φ\varphi, the higher the degree of security. We demonstrate how the idea works in a case study based on an electronic voting scenario. To this end, we model the vVote implementation of the \Pret voting protocol for coercion-resistant and voter-verifiable elections. Then, we identify "natural" strategies for the voter to obtain receipt-freeness, and measure the voter's effort that they require. We also look at how hard it is for the coercer to compromise the election through a randomization attack

    Multi-Valued Verification of Strategic Ability

    Full text link
    Some multi-agent scenarios call for the possibility of evaluating specifications in a richer domain of truth values. Examples include runtime monitoring of a temporal property over a growing prefix of an infinite path, inconsistency analysis in distributed databases, and verification methods that use incomplete anytime algorithms, such as bounded model checking. In this paper, we present multi-valued alternating-time temporal logic (mv-ATL*), an expressive logic to specify strategic abilities in multi-agent systems. It is well known that, for branching-time logics, a general method for model-independent translation from multi-valued to two-valued model checking exists. We show that the method cannot be directly extended to mv-ATL*. We also propose two ways of overcoming the problem. Firstly, we identify constraints on formulas for which the model-independent translation can be suitably adapted. Secondly, we present a model-dependent reduction that can be applied to all formulas of mv-ATL*. We show that, in all cases, the complexity of verification increases only linearly when new truth values are added to the evaluation domain. We also consider several examples that show possible applications of mv-ATL* and motivate its use for model checking multi-agent systems
    corecore